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Abstract A gravitational wave must be nonlinear to be able to transport its own source, that
is, energy and momentum. A physical gravitational wave, therefore, cannot be represented
by a solution to a linear wave equation. Relying on this property, the second-order solution
describing such physical waves is obtained. The effects they produce on free particles are
found to consist of nonlinear oscillations along the direction of propagation.
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1 Introduction

For a long period after the advent of general relativity, the question of the existence or not of
gravitational waves was a very controversial issue. In the seventies, the discovery of a binary
pulsar system whose orbital period changes according to the predicted wave emission put
an end to the controversy [1]. In fact, that discovery provided an indirect but compelling ex-
perimental evidence for the existence of gravitational waves [2–5]. That evidence, however,
did not provide any clue on their form and effects. As a matter of fact, although widely con-
sidered a finished topic [6], it actually remains plagued by many obscure points [7, 8]. For
example, although there seems to be an agreement that the transport of energy-momentum
by gravitational waves is essentially a nonlinear phenomenon, instead of going to the sec-
ond order, one usually assumes a “mixed” procedure, which consists basically in assuming
that gravitational waves carry energy (are nonlinear, or at least second order), but at the
same time, because this energy is very small, one also assumes that its evolution can ap-
proximately be described by a linear (first order) equation [9]. When one speaks of “linear
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gravitational waves”, therefore, one means nonlinear gravitational waves whose dynamics
is assumed to be approximately described by a linearized equation. This means that, in ad-
dition to the sequential levels of accuracy implied by the perturbative analysis, there is also
another approximation, implied by the “mixed” approach, according to which all first-order
equations describing a gravitational wave are to be interpreted as only nearly correct [10].

Such assumption, however, is an unjustified surmise: the issue is not a matter of ap-
proximation, but a conceptual question.1 A gravitational wave either does or does not carry
energy: if it carries, no matter how small it is, it cannot satisfy a linear equation. It is,
therefore, conceptually unsatisfactory to assume that a gravitational wave satisfying a linear
equation is able to transport energy and momentum. If applied to a Yang–Mills propagating
field [12], the approximation described above would correspond to assume that, for a field
with small-enough amplitude, its evolution can be accurately described by a linear equation.
Of course, this is plainly wrong: a Yang–Mills propagating field must necessarily be non-
linear to carry its own (color) source, otherwise it is not a Yang–Mills field. Analogously, a
gravitational wave must necessarily be nonlinear to transport its own source—that is, energy
and momentum.

Taking into account these premises, a critical review of the gravitational wave theory has
been published recently [13]. In that paper, it was discussed why the standard approach to
the gravitational wave theory is not satisfactory. Here, instead of using the mixed approach,
we proceed to the second order and obtain the corresponding nonlinear gravitational wave.
It is important to remark that this re-interpretation of the gravitational wave concept has
no implications for the usual expressions of the power emitted by a mechanical source. In
particular, the (nonlinear) quadrupole radiation formula gives a correct account of the energy
emitted by a binary pulsar, for example. The only we claim is that the energy and momentum
are not transported away by linear, but by nonlinear waves. The basic purpose of the present
paper is to make an analysis of these nonlinear waves, as well as of their effects on test
particles.

2 Linear Approximation

2.1 Linear Wave Equation

The study of gravitational waves involves basically the weak field approximation of Einstein
equation

Rμν − 1

2
gμν R = 8πG

c4
�μν, (1)

where �μν is the source energy-momentum tensor. That is arrived at by expanding the metric
tensor according to

√−ggμν = ημν + ε hμν
(1) + ε2 hμν

(2) + . . . , (2)

where ε is a small parameter introduced to label the successive orders in this perturbation
scheme. When the metric tensor is expanded according to (2), we are automatically as-
suming that there is a background Minkowskian structure in spacetime, with metric ημν .
Accordingly, the gravitational waves are interpreted as perturbations

hμν = ε hμν
(1) + ε2 hμν

(2) + . . . (3)

1There are other arguments against this assumption. See, for example, [11].
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propagating on that fixed Minkowskian background. This interpretation is consistent with
general relativity, as well as with the point of view of field theory, according to which a field
always propagates on a background spacetime [14].

Assuming expansion (2), the first order Ricci tensor is

R(1)μν = ∂λ	
λ
(1)μν − ∂ν	

λ
(1)μλ. (4)

Using the first order Christoffel connection

	λ
(1)μν = 1

2

(
−∂μhλ

(1)ν − ∂νh
λ
(1)μ + ∂λh(1)μν + 1

2
δλ
ν ∂μh(1) + 1

2
δλ
μ ∂νh(1) − 1

2
ημν ∂λh(1)

)
, (5)

the Ricci tensor and the scalar curvature become, respectively,

R(1)μν = 1

2

(
�h(1)μν − 1

2
ημν�h(1) − ∂λ∂μhλ

(1)ν − ∂ν∂
λh(1)μλ

)
(6)

and

R(1) = −1

2
�h(1) − ∂λ∂ρh

λρ
(1) , (7)

where � = ηρλ ∂ρ∂λ is the flat spacetime d’Alembertian, and h(1) = hλ
(1)λ. In consequence,

the first order sourceless gravitational field equation becomes

�h(1)μν − ∂λ∂μhλ
(1)ν − ∂ν∂

λh(1)μλ + ημν∂λ∂ρh
λρ
(1) = 0. (8)

Now, as is well known, wave equation (8) is invariant under (infinitesimal) general space-
time coordinate transformations. Analogously to the electromagnetic wave equation, which
is invariant under gauge transformations, the ambiguity of the gravitational wave equation
can be removed by choosing a particular class of coordinate systems—or gauge, as it is usu-
ally called. The most convenient choice is the class of harmonic coordinate systems, which
at first order is fixed by

∂μhμν
(1) = 0. (9)

In this case, the field equation (8) reduces to the relativistic wave equation

�hρ
(1)ν = 0. (10)

2.2 Linear Waves

A monochromatic plane-wave solution to (10) has the form

h(1)μν = A(1)μν exp[ikρx
ρ], (11)

where A(1)μν = A(1)νμ is the polarization tensor, and the wave vector kρ satisfies

kρ kρ = 0. (12)

The harmonic coordinate condition (9), on the other hand, implies

kμ hμ
(1)ν = 0. (13)
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In analogy with the Lorentz gauge in electromagnetism, it is possible to further special-
ize the harmonic class of coordinates to a particular coordinate system. Once this is done,
the coordinate system becomes completely specified, and the components A(1)μν turn out
to represent only physical degrees of freedom. A quite convenient choice is the so called
transverse–traceless coordinate system (or gauge), in which [15]

hρ
(1)ρ = 0 and hμ

(1)ν Uν
(0) = 0, (14)

with Uν
(0) an arbitrary, constant four-velocity.

Now, although the coordinate system {xμ} has already been completely specified (the
transverse-traceless coordinate system), we still have the freedom to choose different local
Lorentz frames ea . Since the metric gμν = ηab ea

μeb
ν is invariant under changes of frames,

the metric perturbation will also be invariant. In particular, it is always possible to choose a
specific frame, called proper frame, in which Uν

(0) = δ0
ν . In this frame, as can be seen from

the second of (14),

hμ
(1)0 = 0 (15)

for all μ. Linear waves satisfying these conditions are usually assumed to represent a plane
gravitational wave in the transverse-traceless gauge, propagating in the vacuum with the
speed of light. Its physical significance, however, can only be determined by analyzing the
energy and momentum it transports.

2.3 Energy and Momentum Transported by Linear Waves

The energy-momentum tensor of any matter (or source) field ψ is proportional to the func-
tional derivative of the corresponding Lagrangian with respect to the spacetime metric.
Since such a derivative does not change the order of the Lagrangian in the matter field
ψ , both the Lagrangian and the energy-momentum tensor will be of the same order in the
field variable ψ . For example, both Maxwell’s Lagrangian and its corresponding energy-
momentum tensor are quadratic in the electromagnetic field. Now, it is a well known fact
that the gravitational field is itself a source of gravitation. This means that the gravitational
energy-momentum current should appear explicitly in the gravitational field equation. Ac-
cordingly, the wave equation (10) should read

�h(1)μν = 16πG

c4
t(1)μν. (16)

At the linear approximation, therefore, the gravitational energy–momentum density t(1)μν is
restricted to be linear. However, since the energy–momentum density is at least quadratic
in the field variable, t(1)μν vanishes in the linear approximation, leading to the wave equa-
tion (10).

The above property is a crucial difference between linear gravity and electromagnetism,
and is often a source of confusion. Even though the electromagnetic waves are linear, they do
transport energy and momentum. There is no any inconsistency in this result because neither
energy nor momentum are sources of electromagnetic field, and consequently the energy-
momentum tensor does not appear explicitly in the electromagnetic field equation. In other
words, even though the electromagnetic field equations are linear, the energy-momentum
tensor is not restricted to be linear. The linearity of the electromagnetic wave equation,
however, restricts the electromagnetic self–current to be linear, and consequently to vanish.
This means that the electromagnetic wave is unable to transport its own source, that is,
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electric charge. A linear gravitational wave is similarly unable to transport its own source,
that is, energy and momentum. Only a nonlinear wave will be able to do it. This a subtle,
but fundamental difference between electromagnetic and gravitational waves.

The consistency of this result can be verified by analyzing the generation of linear waves.
In the presence of a source, the first order field equation reads

�h(1)μν = 16πG

c4
�(1)μν, (17)

with �(1)μν the first order source energy-momentum tensor. As a consequence of the coordi-
nate condition (9), it is easy to see that

∂μ�(1)μν = 0. (18)

Instead of the usual covariant derivative, �(1)μν is conserved with an ordinary derivative
at the first order. Since this is a true conservation law, in the sense that it leads to a time
conserved charge, we can conclude that in the linear approximation a mechanical system
cannot lose energy in the form of gravitational waves.2 As discussed in Sect. 1, this problem
is usually circumvented by assuming the mixed approach, according to which this equation
is to be interpreted as nearly true.

2.4 Generation of Linear Waves

Let us consider the first order field equation (17). A solution is the retarded potential

h(1)μν = 4G

c4

∫
d3x ′

|�x − �x ′| �(1)μν(t
′, �x ′), (19)

with the source considered in the retarded time

t ′ = t − |�x − �x ′|
c

. (20)

At large distances from the source we can expand

|�x − �x ′| � r − �x ′ · n̂ + . . . , (21)

where r = |�x| is the distance from the source, and n̂ is a unit vector in the direction of �x.
The leading order term of h(1)μν is obtained by replacing |�x − �x ′| in the denominator of (19)
with r ,

h(1)μν = 4G

rc4

∫
d3x ′ �(1)μν(t

′, �x ′), (22)

where now

t ′ = t − r

c
+ �x ′ · n̂

c
. (23)

2This is consistent with the fact that linear gravitational waves do not transport energy nor momentum. The
existence of a linear solution is a mere consequence of the use of a perturbative scheme, but alone it does not
represent the physical wave.
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The Fourier transform of �(1)μν is

�(1)μν(t
′, �x ′) =

∫
d4k

(2π)4
�̃(1)μν(ω, �k) e−iωt ′+i�k·�x′

. (24)

Substituting in (22) and performing the integrations in d3x ′ and d3k, we obtain [2]

h(1)μν = 4G

rc4

∫ ∞

0

dw

2π
�̃(1)μν(ω,ω n̂/c)e−iω(t−r/c). (25)

We see from this expression that, if the source oscillates with a single frequency ω, the plane
wave h(1)μν will necessarily propagate with the same frequency. However, we know from the
quadrupole radiation formula that, if the source oscillates with frequency ω, the gravitational
radiation should come out with frequency 2ω.3 The reason for this factor of 2 is that both
the generation and the effects of gravitational waves on free particles are essentially tidal
effects, which we know to occur twice during a complete cycle. This is a clear indication
that h(1)μν alone cannot represent the physical gravitational wave.

3 Second Order Approximation

3.1 Second–Order Wave Equation

At the second order of the iterated perturbation scheme, the harmonic coordinate condition
reads [14]

∂μhμ
(2)ν = 0. (26)

In these coordinates, the second order gravitational field equation can be written in the form

�hρ
(2)ν = 16πG

c4

(
tρ(2)ν + �ρ

(2)ν

)
, (27)

where t
ρ
(2)ν ≡ t

ρ
(2)ν(h(1), h(1)) represents all terms coming from the left-hand side of Einstein

equation, in addition to the d’Alembertian term. It can be interpreted as the second order
energy-momentum pseudotensor of the gravitational field [9].

Far away from the sources, the second order gravitational waves are governed by the
sourceless version of the wave equation (27),

�hμν
(2) = 16πG

c4
tμν

(2) ≡ Nμν(h(1), h(1)), (28)

where, already considering the traceless gauge condition h(1) = 0,

Nμν(h(1), h(1)) = −hρσ
(1) ∂ρ∂σ hμν

(1) + 1

2
∂μh(1)ρσ ∂νhρσ

(1) + ∂σ hμρ
(1) (∂σ hν

(1)ρ + ∂ρh
νσ
(1) )

− ∂μh(1)ρσ ∂ρhνσ
(1) − ∂νh(1)ρσ ∂ρhμσ

(1)

+ ημν

2

(
∂ρh(1)στ ∂

σ hρτ
(1) − 1

2
∂τh(1)ρσ ∂τhρσ

(1)

)
. (29)

3See, for example, [2, p. 105].
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Using for h
μν
(1) the plane wave solution (11), the wave equation becomes

�hμν
(2) =

[
kρkσ Aρσ

(1) Aμν
(1) − 1

2
kμkνA(1)ρσ Aρσ

(1) − kσ kσ Aμρ
(1) Aν

(1)ρ

− kσ kρA
μρ
(1) Aνσ

(1) + kνkρA(1)ρσ Aμσ
(1) + kμkρA(1)ρσ Aνσ

(1)

− ημν

2

(
kρk

σ A(1)στA
ρτ
(1) − 1

2
kτ k

τA(1)ρσ Aρσ
(1)

)]
exp[i2kρx

ρ]. (30)

Use of the constraints (12) and (13) reduces it to

�hμν
(2) = −�(2)

2
kμkν exp[i 2kρx

ρ], (31)

with

�(2) = A(1)ρσ Aρσ
(1) . (32)

It is worth mentioning that the second-order wave equation is quadratic in the first-order
solution h

μ
(1)ν . The factor “2” in the exponential of the right-hand side is a reminder of this

nonlinear, quadratic dependence.

3.2 Second-Order Nonlinear Waves

A general solution to the wave equation (31) is given by a solution to the homogeneous
equation plus a particular solution to the non-homogeneous equation. A monochromatic
traveling-wave solution can then be written in the form

hμν
(2) = (

Aμν
(2) + iBμν

(2)

)
exp[i 2kρx

ρ], (33)

where

Aμν
(2) = −�(2)

16
ημν (34)

and

Bμν
(2) = �(2)

8

Kθx
θ

Kσ kσ
kμkν, (35)

with Kα an arbitrary wave number four-vector. As a direct inspection shows, this solution
satisfies the harmonic coordinate condition (26). The physical gravitational wave is repre-
sented by the real part of the solution, that is,

hμν
(2) = Aμν

(2) cos[2kρx
ρ] − Bμν

(2) sin[2kρx
ρ]. (36)

Observe that the amplitude B
μν
(2) depends explicitly on the wave number—or equivalently,

on the frequency of the wave. This is a typical property of nonlinear waves.
The amplitude of the first part of the solution satisfies

Aμ
(2)μ ≡ A(2) = − �(2)

4
and kμAμν

(2) = 1

4
kνA(2). (37)
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We consider now a laboratory frame—with a Cartesian coordinate system—from which the
wave will be observed. In this case, only the diagonal components of A

μν
(2) are non-vanishing

and obey

Axx = Ayy = Azz = −Att . (38)

More specifically,

(
Aμν

(2)

) = −�(2)

16

⎛
⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠ . (39)

The second part, on the other hand, satisfies

Bμ
(2)μ ≡ B(2) = 0 and kμBμν

(2) = 0. (40)

If we consider, for example, a wave traveling in the z-direction of the Cartesian system, for
which

kρ = (ω/c,0,0,ω/c) , (41)

the coefficient B
μν
(2) will be of the form

(
Bμν

(2)

) = �(2) Kθx
θ ω2

8Kαkαc2

⎛
⎜⎜⎝

1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

⎞
⎟⎟⎠ . (42)

Considering both parts of the solution we see that the second order wave is neither transverse
nor traceless.

As already seen, if r denotes the distance from the source, the amplitude of the first order
solution scales according to A

μν
(1) ∼ 1/r . As an immediate consequence, �(2) ∼ 1/r2. This

means that the amplitude of the first part of the solution (36) falls off as

Aμν
(2) ∼ 1/r2. (43)

Due to an additional linear dependence on the distance, the amplitude of the second part
falls off as

Bμν
(2) ∼ 1/r. (44)

At large distances from the source, therefore, the dominant solution will be of the form

hμν
(2) � Bμν

(2) sin[2kρx
ρ]. (45)

Usually, second-order effects are supposed to fall off as 1/r2, and for this reason they are
assumed to be neglectful at large distances from the source [15]. However, as shown above,
the second-order gravitational wave h

μν
(2) falls off as 1/r , and consequently the arguments

used to neglect them are not valid in this case. Observe also that, if the source oscillates with
a single frequency ω, the field h

μν
(2) will propagate, as appropriate for a quadrupole radiation,

with a frequency 2ω [2]. This factor of 2 is a direct consequence of the nonlinear nature of
the gravitational wave (see the comment just below (32)), and provides one more evidence
that h

μν
(2) —and not h

μν
(1) —represents the physical (quadrupole) gravitational wave.
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3.3 Generation of Nonlinear Waves

As can be seen from (26) and (27), the second order total energy-momentum tensor is con-
served:

∂μ

[
tμ(2)ν + �μ

(2)ν

] = 0. (46)

The source energy-momentum tensor, on the other hand, as determined by the second order
Bianchi identity, is conserved only in the covariant sense:

∇μ�μ
(2)ν ≡ ∂μ�μ

(2)ν + 	μ
(1)ρμ �ρ

(1)ν − 	ρ
(1)νμ �μ

(1)ρ = 0. (47)

At the second order, therefore, the source energy-momentum tensor is not truly conserved—
it does not lead to a conserved charge. As a matter of fact, the above covariant conservation
law is not a true conservation law, but simply an identity governing the exchange of energy
and momentum between gravitation and matter [20]. As a consequence, in contrast to what
happens at the first order, at the second order a mechanical system can lose energy in the
form of gravitational waves.

It is important to remark once more that the usual expressions of the power emitted
by a mechanical source, and in particular the quadrupole radiation formula, give a correct
account of the energy emitted by a mechanical system. The reason is that nonlinear methods
have always been used in the study of wave generation by such systems. Furthermore, the
quadratic energy-momentum pseudotensor t

ρ
(2)ν is the complex traditionally used to calculate

the energy and momentum transported by gravitational waves. What we claim here is that,
instead of being transported by the linear waves h

μν
(1) , this energy is actually transported by

the second-order gravitational wave h
μν
(2) . Notice from (27) that t

μν
(2) appears as source of

the second-order gravitational field h
μν
(2) . It represents, therefore, the energy and momentum

transported by the second-order gravitational waves.

4 Effects on Free Particles

4.1 The Geodesic Deviation Equation

Let us consider, as usual, two nearby particles separated by the four-vector ξα . This vector
obeys the geodesic deviation equation

∇U ∇Uξα = Rα
μνβ Uμ Uν ξβ, (48)

where Uμ = dxμ/ds, with ds = gμν dxμdxν , is the four-velocity of the particles. Now, each
order of the gravitational field expansion

Rα
μνβ = ε Rα

(1)μνβ + ε2 Rα
(2)μνβ + . . . , (49)

which follows naturally from (2), will give rise to a different contribution to ξα . For consis-
tence reasons, therefore, this vector must also be expanded:

ξα = ξα
(0) + ε ξα

(1) + ε2 ξα
(2) + . . . . (50)

In this expansion, ξα
(0) represents the initial, that is, undisturbed separation between the parti-

cles. As the four-velocity Uμ depends on the gravitational field, it should also be expanded.
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However, since the gravitational wave is interpreted as a perturbation of the flat Minkowski
spacetime, the movement produced on free particles will also be considered in Minkowski
spacetime. This means that we can write Uμ = U

μ
(0) = dxμ/ds(0), where

ds2
(0) = ημν dxμdxν (51)

is the flat spacetime quadratic interval. Of course, the four-velocity U
μ
(0) depends on the

choice of the initial condition—or equivalently, on the choice of the local Lorentz frame
from which the phenomenon will be observed and measured. Using then the freedom to
choose this frame (see Sect. 2.2), we can choose a frame fixed at one of the particles—
called proper frame. In that frame, the proper time s(0) coincides with the coordinate x0 [10],
and the particle four–velocity assumes the form

Uμ
(0) ≡ δμ

0 = (1,0,0,0). (52)

4.2 First-Order Effects

Considering that ξα
(0) represents simply the undisturbed separation between the particles, at

the lowest order the geodesic deviation equation is

d2ξα
(1)

ds2
(0)

+ Uρ
(0) ∂ρ

(
	α

(1)βγ Uγ
(0)

)
ξβ

(0) = Rα
(1)μνβ Uμ

(0) U
ν
(0) ξ

β
(0). (53)

Substituting U
μ
(0) as given by (52), we get

d2ξα
(1)

ds2
(0)

+ ∂0	
α
(1)β0 ξβ

(0) = Rα
(1)00β ξβ

(0). (54)

Using then the first order Riemann tensor

Rα
(1)μνβ = ∂ν	

α
(1)μβ − ∂β	α

(1)μν, (55)

it reduces to

d2ξα
(1)

ds2
(0)

+ ∂0	
α
(1)β0 ξβ

(0) =
(
∂0	

α
(1)β0 − ∂β	α

(1)00

)
ξβ

(0). (56)

Canceling ∂0	
α
(1)β0 ξ

β
(0) on both sides, we get

d2ξα
(1)

ds2
(0)

= − ∂β	α
(1)00 ξβ

(0), (57)

where

	α
(1)00 = 1

2
ηαρ

(
2 ∂0h(1)ρ0 − ∂ρh(1)00

)
. (58)

Specializing now to the transverse-traceless coordinate system, where the components h(1)ρ0

vanish identically, we obtain

d2ξα
(1)

ds2
(0)

= 0. (59)
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Without loss of generality, we can take the solution to be ξα
(1) = constant. In the linear ap-

proximation, therefore, in consonance with the fact that linear gravitational waves do not
transport energy nor momentum, particles are not affected by linear gravitational waves.4

4.3 Second-Order Effects

Up to second order, and already using the first order results, the geodesic deviation equation
(48) reads

d2ξα
(2)

ds2
(0)

+ 	α
(1)γ 0 	γ

(1)β0 ξβ
(0) + ∂0	

α
(2)β0 ξβ

(0) = Rα
(2)00β ξβ

(0). (60)

Substituting the curvature tensor

Rα
(2)00β = ∂0	

α
(2)0β − ∂β	α

(2)00 + 	α
(1)0γ 	

γ

(1)0β − 	α
(1)βγ 	

γ

(1)00, (61)

and considering that in transverse-traceless coordinates 	
γ

(1)00 = 0, we obtain

d2ξα
(2)

ds2
(0)

= − ∂β	α
(2)00 ξβ

(0). (62)

Now, in transverse-traceless coordinates, the second order Christoffel connection is

	α
(2)00 = ∂0h

α
(2)0 − 1

2
∂αh(2)00. (63)

The geodesic deviation equation reduces then to

d2ξα
(2)

ds2
(0)

=
(

1

2
∂β∂αh(2)00 − ∂β∂0h

α
(2)0

)
ξβ

(0). (64)

For definiteness, we consider a wave traveling in the z-direction, in which case kρ is
given by (41). Let us then suppose two particles separated initially in the x-direction by a
distance ξx

(0), that is,

ξβ
(0) = (0, ξ x

(0),0,0). (65)

Considering that, in the proper frame s(0) = ct , it is an easy task to verify that in this case the
resulting equations of motion are

∂2ξx
(2)

∂t2
= ∂2ξ

y
(2)

∂t2
= ∂2ξ z

(2)

∂t2
= 0. (66)

The same result is obtained for two particles separated initially in the y-direction. We con-
sider now two particles separated initially in the z-direction by a distance ξz

(0), that is,

ξβ
(0) = (0,0,0, ξ z

(0)). (67)

In this case, the geodesic deviation equation (64) yields

∂2ξx
(2)

∂t2
= ∂2ξ

y
(2)

∂t2
= 0 , (68)

4For a detailed discussion of this point, see [13].



560 Int J Theor Phys (2010) 49: 549–563

but

1

c2

∂2ξ z
(2)

∂t2
=

(
∂0∂zh(2)z0 − 1

2
∂z∂zh(2)00

)
ξ z

(0). (69)

This means that a gravitational wave does not produce movement orthogonal to the direction
of propagation. In other words, it is not an orthogonal, but a longitudinal wave. Notice that,
in the second order, the two degrees of freedom are represented by h(2)z0 = h(2)0z and h(2)00.

Considering that a detector on Earth will always be at large distances from the wave
source, we use for h(2)μν the dominant solution (45). Furthermore, taking into account the
arbitrariness of the wave vector Kρ , we can choose it in such a way that K0 = K1 = K2 = 0.
In this case, the geodesic deviation equation (69) reduces to

∂2ξ z
(2)

∂t2
= ξ z

(0)

�(2)zω3

4c
sin[2ω(t − z/c)]. (70)

Although the wave amplitude decreases with distance, it can be assumed to be constant in
the region of the experience. Accordingly, we write

∂2ξ z
(2)

∂t2
= 1

4
ξ z

(0)	(2) ω
2 sin[2(ωt − z/λ)], (71)

where

	(2) = �(2)

z

λ
(72)

represents the wave amplitude at the region of the experience, with λ = c/ω the reduced
wavelength.

Observe that now the origin of the coordinate z is completely arbitrary. We can then
choose one of the particles to be at z = 0, in which case z will represent the position of the
second particle. Assuming that the particles are initially (t = 0) at rest, the solution is found
to be

ξ z
(2) = −ξ z

(0)	(2)

16

[
sin[2(ωt − z/λ)] − 2ωt cos[2z/λ] + sin[2z/λ]

]
. (73)

For gravitational waves with wavelength much larger than the particle separation (λ 
 z),
the solution becomes

ξ z
(2) = − ξ z

(0)	(2)

16

[
sin(2ωt) − 2ωt

]
, (74)

When a gravitational wave reaches two particles separated by a distance ξz
(0) in the direction

of the propagation, the distance between them will oscillate with frequency 2ω, and will
grow linearly with time with a velocity

v = ξ z
(0)	(2) ω

8
. (75)

This behavior is the result of tidal forces produced by the passage of a gravitational wave.

5 Final Remarks

Whenever use is made of a perturbation scheme, one forcibly ends up with a linear wave-
equation. There is a widespread belief that gravitational waves can be approximately de-
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scribed by the solution of this linear wave equation. This assumption, however, is not jus-
tified. To understand it, let us make a comparison with gauge fields. As is well known, the
gauge field of Chromodynamics must be nonlinear to transport color charge. Conversely,
since electromagnetic waves are essentially linear, they are unable to transport their own
source, that is, electric charge. Observe that, even though electromagnetic waves are linear,
they do transport energy and momentum. This is possible because neither energy nor mo-
mentum is source of the electromagnetic field. As such, the energy-momentum current does
not enter the electromagnetic field equation, and consequently its linearity does not restrict
the energy-momentum current to be linear. Differently from electromagnetic waves, how-
ever, in order to transport energy and momentum (the source of gravitation), a gravitational
wave must necessarily be nonlinear.

If we accept that the first-order equations are fully correct up to that order, and not just
nearly correct as is usually assumed in the mixed approach, we arrive at the inexorable result
that linear gravitational waves transport neither energy nor momentum. As a consequence,
they are unable to produce any effect on free particles. One may wonder why the first order
gravitational wave, which has a non-vanishing curvature tensor, produces no effects on free
particles. To understand this question, lets consider the following points. First, because it en-
ters the gravitational field equations, the energy-momentum density of any linear spacetime
configuration must vanish because the energy-momentum current is at least quadratic in the
field variables. A non-vanishing energy density can only appear in orders higher than one.
This does not mean that the first-order gravitational field is physically meaningless. In fact,
at the second order it will appear multiplied by itself, giving rise to nonlinear field configu-
rations with non-vanishing energy-momentum density. Second, notice that the components
of the Riemann tensor are not physically meaningful in the sense that they are different in
different coordinate systems. For example, starting with the “electric components” Ri0j0 of
the Riemann tensor, through a general coordinate transformation one can get non-vanishing
“magnetic components” Ri0jk . By inspecting the components, therefore, it is not possible to
know whether they represent a true gravitomagnetic field, or just effects of coordinates. In
order to get an answer, one needs to inspect the invariants constructed out of the Riemann
tensor.5 Now, as a simple calculation shows, all invariants constructed out of the first-order
Riemann tensor of the linear gravitational waves vanish identically [17–19]. This includes
the scalar curvature, the Kretschmann invariant, and the pseudo-scalar invariant. This means
that the transverse components of the first-order wave are empty of physical meaning as no
mass nor angular momentum (or helicity in the massless case) can be associated with them.

Motivated by the above results, we have then obtained the second-order solution to
the gravitational field equations, which might represent a physical gravitational wave. Its
amplitude depends explicitly on the frequency of the wave—a property typically related
to nonlinearity. In contrast to the linear wave, the second-order wave is able to trans-
port energy and momentum. This fact becomes evident if we notice that, at second order,
the source energy-momentum tensor is conserved only in the covariant sense; namely, it
is not really conserved [20]. This means that, differently from what happens at first or-
der, at second order a mechanical system can lose energy in the form of gravitational
waves. Furthermore, although the first-order field is transverse and traceless, the sec-
ond order is longitudinal. This property can be understood by remembering that gravita-
tional waves are generated, and act on particles, through tidal effects, which arise from
inhomogeneities in the gravitational field. The effects they produce on free particles are

5For a discussion of this point, see [16, p. 355].
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then found to consist of nonlinear oscillations along the direction of propagation. This
is the signature a gravitational wave will leave in a detector, the effect to be looked
for.

A crucial point of these waves refer to their frequency. As is well known, the quadrupole
radiation emitted by a source propagates with twice the frequency of the source (this has to
do with the tidal nature of the gravitational wave generation). However, the linear gravita-
tional wave h

μν
(1) emerges from the perturbation scheme propagating with the same frequency

of the source. To circumvent this problem, one has to artificially adjust by hands the wave
frequency (see, for example, [2, p. 105]). On the other hand, owing to its nonlinear nature,
the second order gravitational wave h

μν
(2) naturally emerges propagating with a frequency

which is twice the source frequency, with the factor “2” coming from the fact that h
μν
(2) de-

pends quadratically on h
μν
(1) . This is in agreement with the quadrupole radiation property, as

well as with the tidal nature of the gravitational radiation, and is a clear indication that it
is not the first-order, but the second-order wave that represents the quadrupole (physical)
gravitational wave. It is also important to observe that, due to an explicit additional linear
dependence on the source distance r , the amplitude of the dominant part of h

μν
(2) is found to

fall off as 1/r . Contrary to the usual belief, therefore, which presupposes that second-order
effects fall off as 1/r2, second-order effects are not necessarily neglectful at large distances
from the source.

It is important to remark finally that, according to Birkhoff’s theorem,6 any spherical
source produces a time-independent gravitational field outside it. As a consequence, no
spherically symmetric longitudinal gravitational waves can exist. However, due to the ex-
plicit dependence of the amplitude coefficient (35) on the wave number, we see that the
nonlinear gravitational wave considered here will never be spherically symmetric. The usual
restrictions imposed by Birkhoff’s theorem on longitudinal gravitational waves, therefore,
do not apply to the present case of longitudinal gravitational waves.
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